Manuel Numérique de Mathématiques Informatique Terminale L

Exercice Résolu 3

Une salle de jeu comporte deux consoles identiques proposant le même jeu. Un jour, l'une des deux consoles est déréglée. Les joueurs ne peuvent savoir laquelle des deux est déréglée. Ce jour-là, un joueur choisit au hasard l'une des deux consoles et il joue une partie sur cette console.

On note : l'événement « le joueur choisit la console déréglée » et l'événement contraire de .

              l'événement « le joueur gagne la partie » et l'événement contraire de .

Question

Cette situation aléatoire est modélisée par l'arbre incomplet suivant, dans lequel figurent certaines probabilités. Ainsi, 0,7 est la probabilité que le joueur gagne sachant qu'il a choisi la console déréglée.

  1. Reproduire cet arbre sur la copie et le compléter.

  2. Calculer la probabilité de l'événement «le joueur choisit la console déréglée et il gagne».

  3. Calculer la probabilité de l'événement «le joueur choisit la console non déréglée et il gagne».

  4. Montrer que la probabilité que le joueur gagne est égale à 0,45.

  5. Calculer la probabilité que le joueur ait choisit la console déréglée sachant qu'il a gagné.

Solution

Solution :

  1. Voir l'arbre ci-contre.

  2. L'événement «le joueur choisit la console déréglée et il gagne» est .

    .

  3. L'événement «le joueur choisit la console non déréglée et il gagne» est :

    . .

  4. D'après la formule des probabilités totales :

    .

  5. La probabilité cherchée est :

PrécédentPrécédentSuivantSuivant
AccueilAccueilImprimerImprimerRéalisé avec Scenari (nouvelle fenêtre)